NF00659A₁, A₂, A₃, B₁ and B₂, Novel Antitumor Antibiotics Produced by *Aspergillus* sp. NF 00659

II. Structural Elucidation

KATSUHIRO SUZUKI, ATSUSHI KUWAHARA, TAKAAKI NISHIKIORI and TAIZO NAKAGAWA

Applied Microbiology Research Center, Nippon Kayaku Co., Ltd., 225-1, Koshikiya, Ageo, Saitama 362, Japan

(Received for publication February 21, 1997)

NF00659A₁, A₂, A₃, B₁ and B₂, having insecticidal and antitumor activities, were isolated from a culture mycelium of *Aspergillus* sp. NF 00659. The novel structure of NF00659s were determined mainly by spectroscopic studies including various NMR measurements. NF00659s have a common structure which consists of acyl, α -pyrone and 4,5-seco-tricyclic diterpene moieties.

During the course of our screening for insecticides from microbial metabolites, a series of novel bioactive compounds, NF00659A₁ (1), A₂ (2), A₃ (3), B₁ (4) and B₂ (5), was isolated from a culture mycelium of *Aspergillus* sp. NF 00659. The structures were determined by spectroscopic analysis as novel 4,5-*seco*-tricyclic diterpene α -pyrone (Fig. 1). These compounds showed potent growth inhibitory activities against human ovarian carcinoma A2780 and human colorectal adenocarcinoma SW480 cells as well as insecticidal activites. The taxonomy, fermentation, isolation and biological activities of NF00659s were reported in the preceding paper¹). In this paper, we describe the structural elucidation of NF00659s.

Results

Physico-chemical Properties of NF00659A₁,

 A_2 , A_3 , B_1 and B_2

NF00659A₁ (1), A₂ (2), B₁ (4) and B₂ (5) were isolated as white powders and A₃ (3) was as colorless crystals. The physico-chemical properties of NF00659s are summarized in Table 1. The molecular weights of NF00659s were obtained with FAB-MS in the positive and negative ion modes. In the positive ion mode, 1, 2 and 3 gave a dehydrated ion peak $[M-OH]^+$ while 4 and 5 gave no dehydrated ion peak. The strong UV absorption was observed at 265 nm (ε 28,000) for 1 and 4, and at 300 nm (ε 44,000) for 2 and 5. The IR spectra of 1, 2, 4 and 5 suggested the presence of unsaturated ester (1710~1706

Fig. 1. Structures of NF00659s.

	NF00659A1(1)	NF00659A2(2)	NF00659A3(3)	NF00659B1(4)	NF00659B2(5)
Appearance	white powder	white powder	white powder	white powder	white powder
MP (°C)	224-226	186-187	272-274	144-145	176-178
Molecular formula	C36H52O7	C38H54O7	C29H42O7	C36H52O6	C38H54O6
Molecular weight	596	622	502	580	606
FAB-MS (<i>m</i> / <i>z</i>)	597 [M+H] ⁺	623 [M+H] ⁺	503 [M+H] ⁺	581 [M+H] ⁺	607 [M+H]⁺
	595 [M-H] ⁻	621 [M-H] ⁻	501 [M-H]	579 [M-H]	605 [M-H]
HRFAB-MS (m / z)					
Found:	597.3771	623.3936	503.3009	581.3834	607.3987
Calcd:	597.3791	623.3948	503.3001	581.3842	607.3999
	for C36H53O7	for C38H55O7	for C29H43O7	for C36H53O6	for C38H55O6
меон UV λ max nm(ε)	265 (28,000)	300 (44,000)	291 (8,600)	265 (28,000)	300 (44,000)
IR ∨ max(KBr) cm ⁻¹	3400, 3250, 1706,	3400, 3250, 1710,	3400-3200, 1736,	3200, 1709, 1664,	3200, 1707, 1666,
	1676, 1640, 1618, 1571	1675, 1644, 1616, 1568	1668, 1636, 1567	1644, 1576, 881	1645, 1617, 1574, 885
[α] _D ²⁰ (CHCl ₃)	-4.8° (c 1.0)	-11.7° (c 0.34)	-9.1° (c 1.0)	-2.5° (c 0.2)	-16.4° (c 0.23)
TLC (Rf value)					
System I ^{a)}	0.46	0.46	0.13	0.35	0.35
System II ^{b)}	0.39	0.34	0.48	0.34	0.30

Table 1. Physico-chemical properties of NF00659A₁ (1), A_2 (2), A_3 (3), B_1 (4) and B_2 (5).

a) Merck, Kieselgel 60F254, n -hexane-diethylether (2:5)

b) Merck, RP-18 F254s, CH3CN-THF-5mM NH4OAc (7:2:1)

cm⁻¹). On the other hand, IR absorption at 1736 cm^{-1} of **3** suggested the presence of saturated ester instead of unsaturated ester.

Structure Elucidation

Structure of NF00659 A_1 (1)

The FAB-MS gave pseudomolecular ion peaks at m/z597 $[M+H]^+$, 619 $[M+Na]^+$ and 595 $[M-H]^-$. A dehydrated ion peak was observed at m/z 579 $[M - OH]^+$. The molecular formula of 1 was determined to be $C_{36}H_{52}O_7$ by HRFAB-MS (*m*/*z*: found 597.3771 $[M+H]^+$, calcd 597.3791 for $C_{36}H_{53}O_7$). ¹H and ¹³C NMR spectra of 1 were measured in DMSO- d_6 and pyridine- d_5 and are summarized in Tables 2 and 3. Thirty six signals in the ¹³C NMR spectrum were observed, and the result was in accord with that of the HRFAB-MS. They were classified as eight methyl, eight methylene, ten methine and ten quarternary carbons in DEPT spectra. The connectivity of thirty six carbon atoms and fifty protons was assigned by ¹H-¹³C COSY spectrum. The remaining two protons in the molecule were assigned to two hydroxy protons. The IR spectrum of 1 showed the presence of hydroxyl groups (3400 and $3250 \,\mathrm{cm}^{-1}$) and carbonyl groups (1706 and 1676 cm^{-1}). The UV spectrum showed an absorption at 265 nm (ε 28,000) ascribed to a conjugated carbonyl group.

The analysis of ¹H-¹H COSY spectrum revealed six

parts of proton spin network, tentatively named partial structures $I \sim VI$ as shown in Fig. 2. The connectivity of these partial structures was determined by COLOC, HMBC and HOHAHA experiments (Fig. 3).

6-Methyl-2,4-octadienoyl moiety (Fig. 2-I) was connected to C-3 position because the ester carbonyl carbon of δ 165.41 (C-1") was coupled to the three protons of δ 5.89 (2"-H), 7.18 (3"-H) and 4.93 (3-H). The coupling constants of ${}^{2}J_{2",3"}$ and ${}^{2}J_{4",5"}$ of 15.4 and 15.3 Hz for the dienoyl moiety indicated that their relationships are in the *trans* conformation. This partial structure was supported by a good agreement of NMR chemical shifts and UV maximum with those of dendryphiellins reported previously²).

The structure of diterpene moiety (Fig. 2-II ~ VI) was suggested by the following evidences; the respective three methyl protons of δ 1.40 (18-H₃), 1.11 (20-H₃) and 0.97 (17-H₃) had three coupling carbons of δ 76.17 (C-4), 79.48 (C-3) and 25.51 (C-19), three ones of δ 39.06 (C-10), 34.35 (C-1) and 36.55 (C-9), and four ones of δ 36.63 (C-8), 33.90 (C-7), 36.55 (C-9) and 55.27 (C-14); the oxymethine proton observed at δ 3.81 (5-H) was coupled to three carbons of C-4, C-10 and C-1, suggesting the formation of 4,5-oxy-4,5-*seco*-tricyclic diterpene.

The presence of 5,6-dimethyl-4-oxy- α -pyrone was shown because the carbon signals of C-1' and C-3' were observed at δ 165.54 and 166.51 in pyridine- d_5 which

	At(1)	A1(1)	A-OH(1a)	A2(2)
No. of proton	DMSO-d 6	pyridine-d 5	pyridine-d 5	DMSO-d 6
1	1.34 (1H, m)	1.35 (1H, m)	1.34 (1H, br.d, J=13.6 Hz)	1.34 (1H, m)
	1.45 (1H, m)	1.64 (1H, m)	1.61 (1H, m)	1.43 (1H,m)
2	1.36 (1H, m)	1.71 (1H, m)	1.90 (1H, m)	1.36 (1H, m)
	1.91 (1H, m)	2.17 (1H, m)	2.28 (1H, m)	1.97 (1H, m)
3	4.93 (1H, br.d, J=10.6Hz)	5.38 (1H, br.d, J=10.8 Hz)	4.17 (1H, br.d, J=11.6 Hz)	4.93 (1H, br.d, J=10.6 Hz)
5	3.56 (1H, br.d, J=10.3Hz)	3.81 (1H, br.d, J=11.0 Hz)	3.80 (1H, dr.d, J=10.6 Hz)	3.56 (1H, br.d, J=10.6 Hz)
6	1.35 (1H, m)	1.61 (1H, m)	1.61 (1H, m)	1.35 (1H, m)
	1.60 (1H, m)	1.92 (1H, m)	1.92 (1H, m)	1.60 (1H, m)
7	1.41 (1H, m)	1.59 (1H, m)	1.58 (1H, m)	1.41 (1H, m)
	2.21 (1H, m)	2.77 (1H, dd, J=6.0, 13.2 Hz)	2.78 (1H, m)	2.22 (1H, m)
9	1.92 (1H, m)	2.35 (1H, m)	2.37 (1H, dd, J=3.3, 11.2 Hz)	1.97 (1H, m)
11	1.68 (2H, m)	1.75 (1H, m), 1.91 (1H, m)	1.85-1.92 (2H, m)	1.68 (2H, m)
12	4.32 (1H, br.s)	4.69 (1H, br.s)	4.69 (1H, br.s)	4.34 (1H, br.s)
14	1.70 (1H, m)	2.27 (1H, br.d, J=11.7 Hz)	2.29 (1H, br.d, J=12.2 Hz)	1.70 (1H, m)
15	2.53 (1H, br.d, J=12.5Hz)	3.16 (1H, br.d, J=13.2 Hz)	3.18 (1H, br.d, J=13.2 Hz)	2.58 (1H, br.d, J=13.2 Hz)
	2.81 (1H, br.t, J=12.5Hz)	3.34 (1H, br.t, J=12.7 Hz)	3.36 (1H, br.t, J=13.2 Hz)	2.82 (1H, br.dd, J=13.1 Hz)
16	4.46 (1H, d, J=2.2Hz)	4.76 (1H, d, J≃2.5 Hz)	4.76 (1H, br.d, J=2.2 Hz)	4.47 (1H, d, J=2.2 Hz)
	4.87 (1H, d, J=2.2Hz)	5.05 (1H, d, J=2.5 Hz)	5.07 (1H, br.d, J=2.5 Hz)	4.87 (1H, d, J=2.2 Hz)
17	0.92 (3H, s)	0.97 (3H, s)	1.02 (3H, s)	0.93 (3H, s)
18	1.14 (3H, s)	1.40 (3H, s)	1.49 (3H, s)	1.15 (3H, s)
19	1.14 (3H, s)	1.32 (3H, s)	1.54 (3H, s)	1.15 (3H, s)
20	0.92 (3H, s)	1.11 (3H, s)	1.13 (3H, s)	0.93 (3H, s)
6'	1.78 (3H, s)	1.87 (3H, s)	1.88 (3H, s)	1.80 (3H, s)
7'	2.18 (3H, s)	2.01 (3H, s)	2.01 (3H, s)	2.15 (3H, s)
2"	5.89 (1H, d, J=15.3Hz)	6.06 (1H, d, J≈15.6Hz)		5.88 (1H, d, J=15.5 Hz)
3"	7.18 (1H, dd, J=10.5, 15.3Hz)	7.55 (1H, dd, J=11.2, 15.6 Hz)		7.22 (1H, dd, J=11.4, 15.5 Hz)
4 "	6.25 (1H, dd, J=10.3, 15.4Hz)	6.25 (1H, dd, J=11.2, 15.6 Hz)		6.33 (1H, dd, J=11.4, 14.7 Hz)
5 "	6.16 (1H, dd, J=7.3, 15.4Hz)	6.01 (1H, dd, J=8.3, 15.6 Hz)		6.68 (1H, dd, J=11.0, 14.7 Hz)
6"	2.17 (1H, m)	2.06 (1H, m)		6.15 (1H, dd, J=11.0, 15.4 Hz)
7 "	1.33 (2H, m)	1.27 (2H, dq, J=6.8, 6.8 Hz)		5.87 (1H, dd, J=6.6, 15.4 Hz)
8 "	0.83 (3H, t, J=7.3Hz)	0.80 (3H, t, J=7.3 Hz)		2.15 (1H, m)
9"	0.99 (3H, d, J=6.6Hz)	0.93 (3H, d, J=6.8 Hz)		1.34 (2H, m)
10"				0.84 (3H, t, J=7.5 Hz)
11"				1.00 (3H, d, J=7.0 Hz)

Table 2-1.	¹ H NMR chemical	shifts of NF00659s	(400 MHz).

Chemical shifts are given in ppm with reference to TMS as 0.00ppm.

was in accord with 4-hydroxy- α -pyrone ring system of aszonapyrone A³⁾. The methyl proton of δ 1.87 (6'-H₃) was coupled to four carbons of δ 107.73 (C-4'), 166.51 (C-3'), 155.24 (C-5') and 17.02 (C-7'). To prove the constitution of the aromatic ring moiety, alcohol (1a) was prepared from 1 by a methanolysis with sodium methoxide as described in experimental section. The UV maximum of 1a at 290 nm supported the presence of the α -pyrone ring moiety^{3,4}).

Furthermore, the methylene protons observed at δ 3.16 and 3.34 (15-H₂) was coupled to three carbons of C-1', C-2' and C-3', suggesting the connection of α -pyrone and diterpene moieties as shown in Fig. 3. All carbons of **1** were assigned and then two hydroxyl groups in the molecule were assigned at the C-12 and C-3' positions from their chemical shifts. Therefore the plane structure of NF00659A₁ (**1**) was deduced to be tricyclic diterpene α -pyrone as shown in Fig. 1.

Structure of NF00659 A_2 (2)

The molecular formula of NF00659A₂ (2) was elucidated as $C_{38}H_{54}O_7$ from the HRFAB-MS, which was two more carbon atoms, two more protons than that of 1. ¹H and ¹³C NMR spectra of 2 closely similar to those of 1 except for the C-2" ~ 5" region of the side-chain, where dienoyl moiety was extended to trienoyl. In agreement, the olefinic protons of the side-chain clearly showed correlations to the neighbouring olefinic and a methine proton (8"-H) signals in ¹H-¹H COSY experiments. The coupling constants ²J_{2",3"}, ²J_{4",5"} and ²J_{6",7"} of 15.5, 14.7 and 15.4 Hz for 2 indicated that their relationships are in the *trans* conformation. Signals for remainder of the structure of NF00659A₂ equivalent to that in 1 could be assigned by a series of ¹H-¹H, ¹H-¹³C

	A3(3)	B1(4)	B2(5)
No. of proton	pyridine-d 5	DMSO-d 6	DMSO-d 6
1	1.31 (1H, m)	1.34 (1H, m)	1.35 (1H, m)
	1.60(1H, m)	1.45 (1H, m)	1.46 (1H, m)
2	1.89 (1H, m)	1.42 (1H, m)	1.42 (1H, m)
	2.10 (1H, br.dd, J=12.1,13.2 H	lz 1.93 (1H, m)	1.93 (1H, m)
3	5.24 (1H, br.d, J≑10.6 Hz)	4.90 (1H, br.d, Jੋ=10.7 Hz)	4.90 (1H, d, J=10.6 Hz)
5	3.76 (1H, br.d, J=11.0 Hz)	3.59 (1H, br.d, J=10.8 Hz)	3.58 (1H, br.d, J=11.4 Hz)
6	1.83-1.98 (2H, m)	1.32 (1H, m)	1.32 (1H, m)
		1.57 (1H, m)	1.57 (1H, m)
7	1.58 (1H, m)	1.35 (1H, m)	1.35 (1H, m)
	2.76 (1H, dd, J=5.9, 13.2 Hz)	2.20 (1H, m)	2.20 (1H, m)
9	2.35 (1H, dd, J=3.3, 12.8 Hz)	2.00 (1H, m)	2.00 (1H, m)
11	1.78-1.84 (2H, m)	1.50 (1H, m), 1.37 (1H, m)	1.50 (1H, m), 1.37 (1H, m)
12	4.68 (1H, br.s)	2.00 (1H, m), 2.38 (1H, m)	2.00 (1H, m), 2.39 (1H, m)
14	2.27 (1H, br.d, J=10.7 Hz)	1.98 (1H, m)	1.98 (1H, m)
15	3.15 (1H, br.d, J=13.2 Hz)	2.37 (1H, br.d, J=12.8 Hz)	2.38 (1H, br.d, J=12.6 Hz)
	3.33 (1H, br.t, J=12.8 Hz)	2.70 (1H,br.t, J=12.1 Hz)	2.70 (1H, br.t, J=12.3 Hz)
16	4.74 (1H, br.d, J=2.6 Hz)	4.15 (1H, br.s)	4.15 (1H, br.s)
	5.05 (1H, br.d, J=2.2 Hz)	4.43 (1H, br.s)	4.43 (1H, br.s)
17	0.95 (3H, s)	0.96 (3H, s)	0.98 (3H, s)
18	1.27 (3H, s)	1.13 (3H,s)	1.13 (3H, s)
19	1.31 (3H, s)	1.13 (3H,s)	1.13 (3H, s)
20	1.02 (3H, s)	0.92 (3H, s)	0.92 (3H, s)
6'	1.88 (3H, s)	1.83 (3H, s)	1.82 (3H, s)
7'	2.01 (3H, s)	2.11 (3H, s)	2.11 (3H, s)
2"	2.05 (3H, s)	5.92 (1H, d, J=15.3 Hz)	5.89 (1H, d, J=15.0 Hz)
3"		7.18 (1H, dd, J=9.9, 15.1 Hz)	7.22 (1H, dd, J=11.4, 16.4 Hz)
4 "		6.25 (1H, dd, J=9.9, 15.5 Hz)	6.34 (1H, dd, J=11.4, 14.7 Hz)
5"		6.16 (1H, dd, J=7.0, 15.3 Hz)	6.69 (1H, dd, J=10.6,14.7 Hz)
6"		2.18 (1H, m)	6.15 (1H, dd, J=11.0, 15.0 Hz)
7 "		1.32 (2H, m)	5.88 (1H, dd, J=7.0, 15.0 Hz)
8"		0.83 (3H, t, J=7.4 Hz)	2.16 (1H, m)
9"		0.99 (3H, d, J=6.8 Hz)	1.33 (2H, m)
10"			0.83 (3H, t, J=7.3 Hz)
4 4 8			0 99 (3H d J=6 7 Hz)

Table 2-2. ¹H NMR chemical shifts of NF00659s (400 MHz).

Chemical shifts are given in ppm with reference to TMS as 0.00ppm.

COSY and HMBC experiments. Therefore the structure of NF00659A₂ (2) was determined as shown in Fig. 1.

Structure of NF00659 A_3 (3)

The molecular formula of NF00659A₃ (3) was elucidated as $C_{29}H_{42}O_7$ from the HRFAB-MS, which was two more carbon atoms, two more protons and one more oxygen atom than that of 1a. UV maximum and IR spectrum were closely similar to those of 1a. However, an ester absorption band in the IR spectrum was observed at 1736 cm⁻¹. ¹H and ¹³C NMR spectra of 3 were also closely similar to those of 1a, except for additional acetyl signals at δ_H 2.08 (3H, s), and δ_C 170.24 (C-1") and 21.18 (C-2"). The ester linkage of the acetyl group between the carbonyl carbon and the oxymethine (C-3) was deduced from a coupling between δ_C 170.24 (C-1") and δ_H 5.24 (3-H) in HMBC. Therefore the structure of NF00659A₃ (3) was determined as 3-acetyl-1a shown in Fig. 1.

Structure of $NF00659B_1$ (4)

The molecular formula of NF00659B₁ (4) was elucidated as $C_{36}H_{52}O_6$ from the HRFAB-MS, which was one less oxygen atom than that of 1. UV maximum and IR spectra were closely similar to those of 1. However, 4 differed from 1, 2 and 3 in lacking dehydrated ion peak in the positive FAB-MS spectrum. Furthermore, the NMR signal of the oxymethine group (C-12) of 1 was replaced by the ¹H and ¹³C signals of a methylene group at δ_H 2.00 and 2.38, and δ_C 29.95, respectively. The chemical shifts of the *exo*-methylene protons of 4 showed high field shift from δ 4.46 and 4.87 to δ 4.15 and 4.43, supporting that the hydroxyl group was replaced to a proton at the position (C-12). Therefore the structure of NF00659B₁ (4) was determined as 12-

	A1(1)	A1(1)	A-OH(1a)	A2(2)	A3(3)	B1(4)	B2(5)
No. of Carbon	DMSO-d 6	pyridine-d 5	pyridine-d 5	DMSO-d 6	pyridine-d 5	DMSO-d 6	DMSO- <u>d</u> 6
1	34.35	35.42	35.81	34.40	35.04	34.33	34.27
2	26.90	27.90	31.73	26.95	27.80	27.01	27.10
3	78.31	79.48	77.93	78.36	79.62	78.47	78.46
4	75.20	76.17	77.89	75.25	75.99	75.20	75.15
5	74.10	75.15	74.31	74.14	75.08	73.55	73.51
6	26.78	27.81	27.95	26.81	27.80	26.81	26.76
7	33.90	34.98	35.13	33.98	34.98	33.33	33.27
8	36.63	37.54	37.60	36.66	37.55	36.71	36.66
9	36.55	37.82	37.72	36.57	37.82	42.19	42.12
10	39.06	40.00	40.02	39.09	39.96	36.71	36.66
11	31.45	32.95	32.99	31.50	32.96	23.44	23.20
12	71.11	72.48	72.54	71.24	72.49	29.95	29.89
13	146.31	147.55	147.67	146.09	147.55	148.50	148.47
14	55.27	56.22	56.26	55.18	56.20	54.97	54.92
15	24.10	25.45	25.44	24.15	25.45	22.04	22.20
16	116.21	116.72	116.59	116.34	116.73	108.96	108.91
17	27.72	28.21	28.31	27.75	28.18	28.31	28.27
18	22.71	23.31	22.70	22.70	23.16	22.78	22.73
19	25.05	25.51	26.10	25.08	25.45	25.07	25.03
20	20.05	20.69	20.75	20.04	20.66	20.34	20.29
1'	164.22	165.54	165.52	164.30	165.52	164.13	164.10
2'	99.42	101.16	101.19	99.72	101.16	101.81	101.67
3'	165.88	166.51	166.46	165.50	166.48	165.47	165.42
4'	106.86	107.73	107.71	106.77	107.72	106.40	106.39
5'	154.72	155.24	155.18	154.66	155.24	154.62	154.55
6'	9.84	10.31	10.28	9.87	10.31	10.26	10.22
7'	16.82	17.02	16.99	16.85	17.02	16.99	16.95
1 "	165.41	166.51		165.36	170.24	164.85	165.10
2"	119.23	120.11		119.71	21.18	119.29	119.74
3"	145.22	145.92		144.87		145.26	144.97
4 "	150.40	150.72		127.69		150.42	127.80
5"	126.53	127.26		141.67		126.55	141.80
6"	38.04	38.96		128.15		38.04	128.20
7 "	28.60	29.41		145.83		28.63	145.93
8 "	11.43	11.81		38.08		11.45	37.90
9"	19.22	19.57		28.89		19.24	28.60
10"				11.50			11.44
11"				19.43			19.36

Table 3. ¹³ C NMR chemical	shifts of NF00659s (100 MHz).
---------------------------------------	-------------------------------

Chemical shifts are given in ppm with reference to TMS as 0.0ppm.

deoxy-1 shown in Fig. 1.

Structure of $NF00659B_2$ (5)

The molecular formula of NF00659B₂ (5) was elucidated as $C_{38}H_{54}O_6$ from the HRFAB-MS, which was one less oxygen atom than that of 2. The positive FAB-MS gave no dehydrated ion peak as was the case of 4. UV maximum of 5 suggested the presence of trienoyl moiety, which were coincident with that of 2. The NMR signals of the trienoyl moiety of 5 were coincident with those of 2. Signals for remainder of the structure of 5 equivalent to that in 4 could be assigned by a series of ¹H-¹H, HMQC and HMBC experiments. Therefore the structure of NF00659B₂ (5) was determined as 12-deoxy-2 shown in Fig. 1.

Discussion

NF00659s were isolated as novel antitumor antibiotics from the extract of *Aspergillus* sp. NF 00659. The structures of NF00659s established by spectroscopic analysis, mainly NMR techniques, consist of common three parts, acyl side-chain, α -pyrone and 4,5-secotricyclic diterpene moieties. The skeleton of NF00659s has a novel 4,5-oxy-4,5-seco diterpene structure derived

Fig. 2. Partial structures and chemical shifts $\delta_{\rm H}$ ($\delta_{\rm C}$) from ¹H-¹H and ¹H-¹³C COSY experiments for NF00659A₁.

Fig. 3. ¹H-¹H HOHAHA, COLOC and HMBC experiments for NF00659A₁.

from fungi. The biogenesis of NF00659s is surmised to be the result of a combination of the mevalonate-geranylgeranyl pyrophosphate route with acetate-polyketide route reported in the biogenesis of colletotrichins⁵). Formation of the ether linkage of NF00659s is probably derived by concendation of 10,11-15,16-diepoxy-geranylgeranyl pyrophosphate proposed by CARMELY *et al.*⁶). The stereochemistry of NF00659s is under investigation.

Experimental

General Melting points were determined with a Yanako micro-melting point apparatus and were uncorrected. Optical rotations were measured on a JASCO model DIP-370 digital polarimeter. UV-VIS spectra were measured on a Shimadzu UV-265 spectrometer. IR spectra were measured on a Perkin-Elmer 1640 spectrometer. FAB- and HRFAB-MS spectra were obtained with a JEOL JMS-AX505HA mass spectrometer. The ¹H and ¹³C NMR spectra were recorded on JEOL GX400 and α 400 spectrometers.

Methanolysis of 1

NF00659A₁ (1, 10.0 mg) was dissolved in methanol (2 ml). Sodium methoxide-methanol (1 mmol/liter, 0.2

ml) was added and allowed to stand for 4 hours at room temperature. The resulting solution was extracted with *n*-hexane after addition of water (10 ml), and then extracted with ethyl acetate. The ethyl acetate phase was washed with brine, dried over anhydrous sodium sulfate and concentrated *in vacuo*. The residue (6.1 mg) was purified by a preparative TLC (Kiesel gel 60 F_{254} , Merck) developed with *n*-hexane - acetone (1:1). The main quenching band (Rf value 0.5) under UV light at 254 nm was scratched, extracted with *n*-hexane - acetone (1:1) and the extract was concentrated *in vacuo*. The resulting product was crystallized from *n*-hexane - ethyl acetate to yield **1a** (5 mg).

Alcohol (1a); colorless crystal, molecular weight 460 (FAB-MS m/z: 483 [M+Na]⁺, 461 [M+H]⁺, 443 [M-OH]⁺, 459 [M-H]⁻), molecular formula C₂₇-H₄₀O₆ (HRFAB-MS m/z: found 461.2868 [M+H]⁺, calcd 461.2903 for C₂₇H₄₁O₆); mp 276~278°C; UV λ_{max}^{MOH} nm: 290 (ε 7,600); IR ν_{max} (KBr) cm⁻¹: 3404, 3300, 1674, 1640, 1568, 1261, 1068 and 1028.

Acknowledgments

The authors would like to thank Mr. M. SATO in the Research Laboratories, Pharmaceuticals Group, and Mr. R. UEHARA in the Takasaki Research Laboratories of Nippon Kayaku Co., Ltd., for measurements of the NMR spectra.

References

- SUZUKI, K.; A. KUWAHARA, H. YOSHIDA, S. FUJITA, T. NISHIKIORI & T. NAKAGAWA: NF00659A₁, A₂, A₃, B₁ and B₂, novel antitumor antibiotics produced by *Aspergillus* sp. NF 00659. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 50: 314~ 317, 1997
- GUERRIERO, A.; V. CUOMO, F. VANZANELLA & F. PIETRA: A novel glyceryl ester (glyceryl dendryphiellate A), a trinor-eremophilane (dendryphiellin A1), and Eremophilanes (Dendryphiellin E1 and E2) from the marine Deuteromycete *Dendryphiella salina* (SUTHERLAND) PUGH *et* NICOT. Helv. Chim. Acta 73: 2090~2096, 1990
- KIMURA, Y.; T. HAMASAKI, A. ISOGAI & H. NAKAJIMA: Structure of aszonapyrone A, a new metabolite produced by *Aspergillus zonatus*. Agric. Biol. Chem. 46: 1963 ~ 1965, 1982
- SASSA, T.; H. KATO & H. KAJIURA: Isolation and structure of pycnophorin, a novel diterpene α-pyrone with antimicrobial activity, produced by phytopathogenic *Macrophoma kuwatsukai*. Tetrahedron Lett. 27: 2121~ 2124, 1986
- KIMURA, Y.; M. GOHBARA & A. SUZUKI: Assignment of ¹³C-NMR spectrum and biosynthesis of collectrichin. Tertahedron Lett. 1977: 4615~4618, 1978
- CARMELY, S. & Y. KASHMAN: The sipholanes, a novel group of triterpenes from the marine sponge Siphonochalina siphonella. J. Org. Chem. 48: 3517~3525, 1983